Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 6 Next »

Overview

Sol is a homogenous supercomputer. Homogeneous supercomputers feature processors and interconnects that are of the same type, brand, and architecture. This uniformity simplifies system management and optimization. This page describes the hardware within Sol for reference

Node Type

CPU

Memory

Accelerator

Standard Compute

128 Cores (2x AMD EPYC 7713 Zen3)

512 GiB

N/A

High Memory

128 Cores (2x AMD EPYC 7713 Zen3)

2048 GiB

N/A

GPU A100

48 Cores (2x AMD EPYC 7413 Zen3)

512 GiB

4x NVIDIA A100 80GiB

GPU A30

48 Cores (2x AMD EPYC 7413 Zen3)

512 GiB

3x NVIDIA A30 24GiB

GPU MIG

48 Cores (2x AMD EPYC 7413 Zen3)

512 GiB

16x NVIDIA A100 sliced into 20GiB and 10GiB “slices”

Xlienx FPGA

48 Cores (2x AMD EPYC 7443 Zen3)

256 GiB

1x Xilinx U280

Bitaware FPGA

52 Cores (Intel Xeon Gold 6230R)

376 GiB

1x BittWare 520N-MX

NEC FPGA

48 Cores (2x AMD EPYC 9274F Zen4)

512 GiB

1x NEC Vector Engine

GraceHopper

72 Cores (NVIDIA Grace CPU aarch64)

512 GiB

1x NVIDIA GH200 480GB

There is privately owned hardware that may have slightly different specs. See the Sol Status Page for the full features of every node

Requesting Resources

Requesting CPUs

To request a given number of CPUs sharing the same node, you can use the following in your SBATCH:

#SBATCH -N 1 # Number of Nodes
#SBATCH -c 5 #Number of Cores per task
or
interactive -N 1 -c 5

This will create a job with 5 CPU cores on one node.

To request a given number of CPUs spread across multiple nodes, you can use the following:

#SBATCH -N 2-4    # number of nodes to allow tasks to spread across (MIN & MAX)
#SBATCH -n 10    # number of TASKS
#SBATCH -c 5     # CPUs per TASK
or
interactive -N 2-4 -n 10 -c 5

The above example will allocate a total of 50 cores spread across as few as 2 nodes or as many as 4 nodes.

Take note of the inclusion or omission of -N:

#SBATCH -c 5     # CPUs per TASK
#SBATCH -n 10    # number of TASKS
or
interactive -n 10 -c 5

This reduced example will still allocate 50 cores, 5 cores per task on any number of available nodes. Note, that unless you are using MPI-aware software, you will likely prefer to always add -N, to ensure that each job worker has sufficient connectivity.

-c and -n have similar effects in Slurm in allocating cores, but -n is the number of tasks, and -c is the number of cores per task. MPI processes bind to a task, so the general rule of thumb is for MPI jobs to allocate tasks, while serial jobs allocate cores, and hybrid jobs allocate both.

See the official Slurm documentation for more information: https://slurm.schedmd.com/sbatch.html

Requesting Memory

Cores and memory are de-coupled: if you need only a single CPU core but ample memory, you can do so like this:

#SBATCH -c 1
#SBATCH -N 1
#SBATCH --mem=120G
or
interactive -N 1 -c 1 --mem=120G

If you do not specify --mem, you will be allocated 2GiB per CPU core OR 24GiB per GPU

To request more than 512GiB of memory, you will need to use the highmem partition

#SBATCH -p highmem
#SBATCH --mem=1400G

To request all available memory on a node:

This will allocate all CPU cores memory (up to 2TiB depending on the node) to your job. This will prevent any other jobs from landing on this node. Only use this if you truly need that much memory

#SBATCH --exclusive 
#SBATCH --mem=0

Requesting GPUs

To request a GPU, you can specify the -G option within your job request:

This will allocate the first available GPU that fits your job request

#SBATCH -G 1
or 
interactive -G 1

To request multiple GPU’s specify a number greater than 1:

#SBATCH -G 4
or 
interactive -G 4

To request a specific number of GPU’s per node when running multi node:

#SBATCH -N 2 # Request two nodes
#SBATCH --gpus-per-node=2 #Four total GPUs, two per node

To request a specific type of GPU (a100 for example):

#SBATCH-G a100:1
or
interactive -G a100:1

GPU Varieties Available

Below is a table demonstrating the available GPU instance sizes you can allocate:

GPU Name

GPU Memory

Slice Count

a100

80GB, 40GB

4 per node, NVLINKed

a30

24GB

4 per node, NVLINKed

1g.20gb

20GB

4 per node

2g.20gb

20GB

12 per node

h100 (Privatley Owned)

96GB

4 -8 per node, NVLINKed

a100s can come in two varieties, as seen above. To guarantee a 80GB a100, include this feature:
#SBATCH -C a100_80. This can be done also with interactive -C a100_80 (a100_40 is also possible).

Requesting FPGAs

Sol has two nodes with a Field Programmable Gate Array (FPGA) accelerator. One is an Intel-based node with a Bitaware 520N-MX FPGA, the other is an AMD-based node with a Xilinx U280. Because there is only FPGA per node, it is recommended to allocate the entire node.

Bitaware:

#SBATCH --exclusive
#SBATCH -L bittware
or
interactive --exclusive -L bittware

Xilinx:

#SBATCH --exclusive
#SBATCH -L xilinx
or
interactive --exclusive -L xilinx

Or via the web portal using the “Additional Sbatch options” section:

Note there should not be a space between “-L” and the FPGA name on the web portal

image-20240320-174636.pngimage-20240320-174758.png

Additional Help

If you require further assistance on this topic, please contact the Research Computing Team. To create a support ticket review our RTO Request Help page. For quick inquiries, reach out via our #rc-support Slack Channel or attend our office hours for live assistance.

We also offer a series of Educational Opportunities and Workshops.

  • No labels